

Thesis Defense

Runoff simulation in the source region of the Yellow River based on satellite precipitation products

Author: Shengli Zhu

Supervisor : Zhaofei Liu

May 16, 2025

Outline

- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

1.1 Background and Significance

1

1.1 Background and SignificanceGlobal Climate Change

Precipitation changes at 2.0°C (3.6°F)

-0.50 J 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

(IPCC, 2021; NASA, 2023)

1.1 Background and Significance

- "Asian Water Tower" and "Yellow River Water Tower"
- "Asian Water Tower"
- The highest independent land unit, most sensitive and fragile region to climate change
- ◆ Global "engine" and "radiator" for climate regulation
- "Yellow River Water Tower"
- Climate, ecology, and hydrology are undergoing significant changes
- The warming trend continues globally, with a larger-than-average increase in temperature in the region
- Yearly precipitation shows a clear increase, especially during the spring, summer, and winter seasons
- potential and actual evapotranspiration have shown an increasing trend
- Runoff exhibits an interdecadal cyclical variation of alternating wet and dry periods, with an overall decreasing trend

1.1 Background and SignificancePrecipitation

- ◆ An important **component** of the water cycle
- Accurate precipitation records and research on trends and variations are crucial for water resource management, weather forecasting, and hydrological modeling
- Precipitation Observation
- Rain gauges can provide relatively accurate and reliable point measurements of precipitation
- Satellites can provide global spatial coverage and more consistent time intervals for observation
- Many satellite-based observational methods have been implemented, using different methods to improve data acquisition by optimizing the global observation network

1.2.1 Development of Satellite Precipitation Products ◆ TRMM → GPM

Tropical Rainfall Measuring Mission (1997~2015)

Global Precipitation Measurement (2014~present)

(Sun et al., 2017) 5

(**USGS**, 2022) 6

1.2.2 Development of Hydrological Modeling

1.2.2 Development of Hydrological Modeling

• Lumped model

- Simple in structure and highly efficient in computation, without considering the spatial distribution of input variables or parameters
- e.g. HBV、Tank、SAC-SAM、GR4J etc.
- Semi-distributed model
- Divides the catchment area into sub-basins with similar characteristics
- Considers spatial variations in hydrological factors within the catchment area
- e.g. TOPMODEL、SWAT、TOPKAPI etc.

• Distributed model

- Considers spatial heterogeneity and performs detailed modeling ²⁰¹⁰ of the hydrological process in each grid unit, with each unit having an independent response
- e.g. VIC、DHSVM、MIKE-SHE etc.

(Paul et al., 2021)

1.2.3 LSTM hydrological simulation

(Phi, 2018)

1.2.3 LSTM hydrological simulation

(Kratzert et al., 2019) 10

Outline

- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

2 Study Area and Data

2.1 Study area

- Located in the northeastern part of the Qinghai-Tibet Plateau
- The terrain is generally lower in the west and higher in the east
- ◆ The average altitude is around 4000 meters
- ◆ Area : 1.22×10⁵km²

2.2 Data

- Ground Station Observation Data
- Meteorological data: From 2000 to 2020, covering 12 meteorological stations
- Streamflow data: From 2008 to 2022, covering the four hydrological stations

2.2 Data	Table 2-1 Description of 15 SPPs				
♦ SPPs	SPPs	Abbreviation	Resolution	Period	
The use of various SPPs such	CHIRPS	CHI	0.05° /1 d	1981.01~present	
The use of various SFFS such	CMORPH-BLD	CMD	0.25° /1 d	1998.01~present	
as CHIRPS, CMORPH, GSMaP,	CMORPH-CRT	CMT	0.25° /1 d	1998.01~present	
IMERG MSWED DERSIANN	GSMaP-Gauge	GaG	0.1° /1 d	2000.03~present	
$IIVIEINO_{i} IVISVEI_{i} IENSIAININ_{i}$	GSMaP-MVK	GaM	0.1° /1 d	2014.03~present	
and TMPA for daily	GSMaP-NRT	GaN	0.1° /1 d	2000.03~present	
precipitation data from 2000	IMERG-Early	IME	0.1° /1 d	2000.06~present	
	IMERG-Final	IMF	0.1° /1 d	2000.06~present	
to 2020	IMERG-Late	IML	0.1° /1 d	2000.06~present	
Other Data	MSWEP	MSP	0.1° /1 d	1979.01~present	
Hudro ATLAS and EDAS	PERSIANN-CCS	PCS	0.04° /1 d	2003.01~present	
HYDRILAS and ERAS-	PERSIANN-CDR	PDR	0.25° /1 h	1983.01~present	
Land, from 2008 to 2022, for	PDIR-Now	PDI	0.04° /1 d	2000.03~present	
constructing the Caravan	TMPA-3B42	TM	0.25° /1 d	1998.01-2019.12	
constructing the Calavan	TMPA-3B42RT	TMT	0.25° /1 d	2000.03-2019.12	
dataset				14	

Outline

- **1** Introduction
- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

3 SPPs Comprehensive and Quantitative Evaluation

3.1 Methodology

3 SPPs Comprehensive and Quantitative Evaluation

Reference and Name Borney

3.2 Comprehensive Quantitative Evaluation of SPPs

Statistics Metrics

- CMD, GaG and IMF show superior performance on all continuous statistical indicators compared to other SPPs
- CMD , GaG and MSP exhibit better precipitation detection capability
- SPPsare stronger in detecting precipitation during the rainy season and weaker during the dry season
- SPPs generally perform similarly under different precipitation intensities

3 SPPs Comprehensive and Quant

3.2 Comprehensive Quantitative Evaluation of SPPs

Spatial Distribution of Statistical Metrics In the SRYR, many SPPs show weak performance in the western area, with stronger performance at the eastern stations, which are more densely located

3 SPPs Comprehensive and Quantitative Evaluation

3.2 Cor	nprehensiv	ve Qu	antita	tive E	Evaluation of	SPPs Table 3-	-2 Compreh	ensive and	Quantitativ	ve Evaluatio	on
and C	uantitative E	valuati	ion		lomprenensive	SPPs	RSC	RSD	RSE	RSA	
SPPs	showed pa	tterns	of ex	ktreme	precipitation	CHI	0.69	0.07	0.75	0.57	
distrik	oution acros	s the s	urface			CMD	0.98	0.81	0.71	0.83	
 IME showed the strongest spatial correlation with 					CMT	0.87	0.42	0.74	0.72		
arour	nd observatio	ons of	extren	ne nre	cinitation	GaG	0.99	0.86	0.49	0.77	
	Bacad on continuous statistics precipitation				procipitation	GaM	0.75	0.64	0.84	0.76	
	tion and the		s Stat	ISUCS,	precipitation	GaN	0.58	0.49	0.86	0.67	
indices, IMF demonstrates superior performance, with an RSA value greater than 0.85					IME	0.76	0.58	0.96	0.80		
					IMF	0.90	0.64	0.93	0.85		
					IML	0.75	0.59	0.95	0.79		
Ta	able3-1 Extrem	ne prec	ipitatio	n index	BMI	MSP	0.86	0.80	0.16	0.58	
SPPs	PRCPTOT	SDII	RX5	R95	R99	PCS	0.00	0.26	0.35	0.19	
GaN	0.45	0.37	0.42	0.47	0.53	PDR	0.76	0.48	0.75	0.69	
IME	0.44	0.52	0.51	0.55	0.57	PDI	0.75	0.54	0.21	0.49	
IMF	0.43	0.41	0.40	0.66	0.63	TM	0.81	0.51	0.64	0.68	
IML	0.44	0.52	0.50	0.53	0.55	TMT	0.37	0.49	0.61	0.49	18

3 SPPs Comprehensive and Quantitative Evaluation

3.3 Caravan-SRYR Hydrological Dataset

Caravan is a global hydrological community dataset that uses publicly available global data such as ERA5-Land and HydroATLAS, which provide climate forcing data and hydrological characteristic data support

This research extends the Caravan dataset to the SRYR. The data from 2008 to 2022 will be used to build the Caravan-SRYR dataset, which will be used to support by drological modeling.

19

Outline

- **1** Introduction
- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

4 Rainfall-Runoff Modeling Based on Deep Learning

4.1 Methodology

CudaLSTM and EA-LSTM

4 Rainfall-Runoff Modeling Based on Deep Learning

4.1 Methodology

Hyperparameters and Training Data

Based on the data from four hydrological stations in the Caravan-SRYR, the **CudaLSTM** and **EA-LSTM** models were trained. The models were then optimized by adjusting the hyperparameters through grid search methods

Table 4-1 Hyperparameters of the LSTM Model in the SRYR

No	LSTM Hyperparameter	Range	Value
1	Initial input gate value	-3, -1, 0, 1, 3	3
2	dropout	0.1, 0.2, 0.3, 0.4, 0.5, 0.6	0.4
	Lr0	1e3, 1e2, 5e2	0.01
3	Learning rate Lr30	5e4, 1e3, 5e3	0.005
	Lr40	1e4, 1e3	0.001
4	Batch size	32, 64, 128, 256	256
5	Hidden size	20, 30, 40, 50	20
6	epochs	20, 30, 40, 50	50
7	Sequence length	146, 182, 365, 730, 1095	365

Table 4-2 Data Used for LSTM Training

Data type	Variable	Description		
Meteorological	precipitation_IMF	Daily precipitation (mm)		
	potential_evaporation	Daily potential evaporation (mm)		
	temperature_2m_mean	Daily mean temperature (°C)		
lorenng data	temperature_2m_max	Daily max temperature (°C)		
	temperature_2m_min	Daily min temperature (°C)		
	area	Area (km ²)		
	elev_mean	Average elevation (m)		
	p_mean	Mean daily precipitation (mm)		
	pet_mean	Mean daily potential evaporation (mm)		
	aridity	Aridity index, ratio of mean PET and mean precipitation		
Static	frac_snow	Fraction of precipitation falling as snow		
catchment attributes	moisture_index	Mean annual moisture index		
	seasonality	Moisture index seasonality		
	high_prec_freq	Frequency of high precipitation days, where precipitation \geq 5 times mean daily precipitation		
	low_prec_freq	Frequency of low precipitation days, where precipitation <1 mm/d		
	high_prec_dur	Average duration of high precipitation events (d)		
	low_prec_dur	Average duration of low precipitation events (d)		

4 Rainfall-Runoff Modeling Based on Deep Learning

4.2 LSTM Model for Rainfall-Runoff Simulation

The EA-LSTM performed better by leveraging the spatial features of the catchment region and more accurately identifying the relationship between precipitation and runoff. At the Tangnaihai station, EA-LSTM achieves an NSE value of 0.92, while CudaLSTM only reaches 0.79

Station	CudaLSTM	EA-LSTM
Jimai	0.77	0.85
Maqu	0.84	0.91
Jungong	0.82	0.91
Tangnaihai	0.79	0.92

Table 4-3 Performance of LSTM Models in the SRYR

4.2 LSTM Model for Rainfall-Runoff Simulation

Both models show high precision in simulating medium and low flow ranges, effectively capturing the relationship between precipitation and runoff in the SRYR

The ability of both LSTM models to simulate extreme runoff values still needs improvement

Outline

- **1** Introduction
- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

5.1 Hydrological models

Model Structure

 E_x

25

• 0

 S_4

 Y_5

5.1 Hydrological Model

- Model Improvement
- In arid and semi-arid regions, the proportion of ET to precipitation is much higher than that of runoff
- Hydrological models often simulate AET using PET for calculations. In the process of simulating rainfall-runoff, AET is typically assumed to be a function of PET
- The original Alpine, TOPMODEL, and Tank models equate PET to AET, ignoring the constraints imposed by soil moisture. To improve this, a nonlinear soil moisture constraint factor is introduced to modify the calculation of AET in Alpine, TOPMODEL, and Tank models:

$$E_a = \begin{cases} E_p, \text{ if } S_m > 0\\ 0, \text{ otherwise} \end{cases} \longrightarrow E_a = \alpha_e^{(SWI-1)} E_p, \alpha_e \in [1,10]$$

(Liu et al., 2019) 26

5 Rainfall-Runoff Modeling Bas

5.2 Results of Model Improvement

- After improvement, the Alpine model achieved an NSE value greater than 0.75 for the Jimai, Maqu, and Tangnaihai stations
- TOPMODEL improvement showed significant enhancement in the low-flow simulations at Jimai, Maqu, and Tangnaihai stations, but a clear discrepancy still existed between the model results and the observed data for high-flow values
- Tank model showed a significant improvement, with NSE value of 0.83 for the Tangnaihai station. It performed well across all stations, especially for high-flow values

Model Type		Hydrological Station				
		Jimai	Maqu J	ungong	Tangnaihai	
	Alpine	-0.29	0.03	-0.05	-0.02	
Origin	TOPMODEL	-0.08	-0.20	-0.30	-0.28	
	Tank	-0.47	-0.15	-0.21	-0.25	
	Alpine	0.68	0.78	0.75	0.77	
Improv- ement	TOPMODEL	0.59	0.46	0.44	0.48	
	Tank	0.77	0.80	0.79	0.83	

5.2 Rainfall-Runoff Modeling in the SRYR

FLEX-IS and the improved Tank models achieved NSE values over 0.80 for Jimai and Maqu stations during the validation period

5.2 Rainfall-Runoff Modeling in the SRYR

- FLEX-IS, GSM-SOCONT, and improved Tankmodels achieved NSE values greater than 0.80 for runoff simulations at Jimai and Maqu stations during the validation period
- ◆ **TOPMODEL** showed weaker performance with NSE < 0.50

Outline

- **1** Introduction
- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

6 Runoff Response Mechanisms Based on Precipitation

4.1

3.8

30

5.0

5.1

23.1

22.7

Cluster III

Cluster IV

6 Runoff Response Mechanisms Based on Precipitation Types

6.2 Rainfall-Runoff Process for Different Precipitation Types

- Cluster I: Precipitation is small and concentrated in the northern part of the basin. Its overall impact on runoff is weaker, but the lag time from the precipitation peak to the formation of the peak flow at Tangnaihai station is relatively short (3.9 days)
- Cluster II: Precipitation is small but concentrated in the southern part of the basin. The peak flow at Jimai station responds more clearly to the precipitation peak, and the corresponding precipitation-runoff lag time is shorter (2.7 days).
- Cluster III: Precipitation is high and widely distributed, leading to the highest average and peak runoff values at the hydrological stations. However, the rainfallrunoff lag time is longer (4.5 days at Jimai station, 6.0 days at Tangnaihai station).
- Cluster IV: Precipitation is also relatively high, but the precipitation intensity shows a gradual decreasing trend. The corresponding runoff lag time is shorter compared to Cluster III.

Station	Р Туре	Average Runoff (m ³ /s)	Peak Runoff (m ³ /s)	Runoff lag time (d)
	Cluster I	207	238	3.4
liamai	Cluster II	251	286	2.7
Jiamai	Cluster III	256	316	4.5
	Cluster IV	238	284	4.1
	Cluster I	933	1056	3.9
Tangnai	Cluster II	1022	1153	5.2
hai	Cluster III	1117	1308	6.0
	Cluster IV	1103	1261	5.1

6 Runoff Response Mechanisms Based on Precipitation Types

6.2 Rainfall-Runoff Process f

- Cluster I \geq
- the intensity of runoff increases significantly
- distribution of precipitation is concentrated in the upstream part of the basin
- At Tangnaihai, the precipitation-runoff lag time is only 1 day
- Cluster II
- precipitation is concentrated in the southern basin
- At Jimai, the response of runoff to precipitation is more significant. The observed runoff ranges from 158 m³/s to 361 m³/s, with a runoff duration of 2 days

32

25 2020-06-22 2020-06-24 - EA-LSTM FLEX-IS 33

6 Runoff Response Mechanisms Based on Precipitation Types

6.2 Rainfall-Runoff Process 1

- Cluster III
- the precipitation in the basin is high, and the precipitation intensity is large
- The precipitation is evenly distributed across the basin, and the rainfall-runoff lag time is relatively long
- Cluster IV
- the precipitation intensity in the basin gradually decreases
- Tangnaihai station shows a significant runoff response. The runoff increases rapidly from 2040 m³/s to 2720 m³/s, and the precipitation-runoff lag time is also relatively short (3 days).

Outline

- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- 5 Rainfall-Runoff Modeling Based on Hydrological Models
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

7.1 Main Conclusions

- (1) The **IMF** product performed the best in the comprehensive evaluation, particularly in detecting extreme precipitation events, with an RSA score of 0.85, significantly higher than other products. This product was used to create the Caravan-SRYR hydrological dataset for the SRYR
- (2) 过Both deep learning and traditional hydrological models simulated the hydrological processes in the SRYR, with **average NSE > 0.70** for all models. The **EA-LSTM** model, based on deep learning, showed significant advantages in rainfall-runoff simulation, with NSE values exceeding 0.85.
- (3) The soil moisture constraint factor was incorporated into the **AET** calculation, **improving** the performance of the Alpine, TOPMODEL, and Tank models in simulating complex hydrological processes in the Yellow River source region

7.1 Main Conclusions

- (4) The runoff responses to different types of precipitation events varied significantly:
- Cluster I: Small precipitation, concentrated in the northern basin, with a short lag time of 3.89 days at Tangnaihai station
- Cluster II: Small precipitation, concentrated in the southern basin, with a short lag time of 2.67 days at Jimai station
- Cluster III: Large and widely distributed precipitation, with the highest average and peak runoff, but a longer lag time (4.46 days at Jimai station, 5.96 days at Tangnaihai station). Models captured the precipitation-runoff relationship most accurately for this cluster.
- Cluster IV: Higher precipitation, but with decreasing intensity and a shorter lag time compared to Cluster III

7.2 Innovation Points

- Constructed the Caravan-SRYR hydrological modeling dataset based on the multidimensional comprehensive quantitative evaluation of SPPs
- Simulated the rainfall-runoff process in the SRYR using both deep learning and traditional hydrological models.
- Improved the Alpine, TOPMODEL, and Tank models by introducing a soil moisture constraint factor in the AET calculation module
- Classified precipitation events using K-means clustering, revealing the runoff response characteristics to different types of precipitation

7.3 Limitations and Prospects

- High-accuracy SPPs are typically calibrated with ground rain gauge data, which have time delays in data release. Future research could explore the potential of near-real-time SPPs for hydrological forecasting.
- The EA-LSTM model has limited training samples and weak interpretability. Combining physical models and deep learning models could improve the model's ability to **explain** hydrological processes in the basin
- The lumped hydrological model has limitations in simulating extreme runoff events due to its simplifying assumptions. Future work could compare the application of different SPPs in distributed hydrological models to validate the performance of various precipitation data in high-accuracy hydrological models

Github repositories

GitHub Repositories Used in This Study

- MARRMoT: https://github.com/wknoben/MARRMoT
- Caravan : https://github.com/kratzert/Caravan
- Spotpy : https://github.com/thouska/spotpy
- NeuralHydrology : https://github.com/neuralhydrology/neuralhydrology

The second	STO 70
Master Thesis	Edit list
the repositories used in my Master thesis	
₽ 4 repositories	
wknoben / MARRMoT	★ Starred ▼
Modular Assessment of Rainfall-Runoff Models Toolbox - Matlab code for 47 conceptual hydrologic models	
● MATLA8 🛱 120 🦞 56 Updated on Oct 3, 2024	
kratzert / Caravan	\star Starred 👻
A global community dataset for large-sample hydrology	
● Jupyter Notebook 😭 208 🖞 42 Updated last month	
thouska / spotpy 🗢 Sponsor	★ Starred ▼
A Statistical Parameter Optimization Tool	
Python 🏠 261 🦞 157 Updated on Feb 21	
neuralhydrology / neuralhydrology	🔶 Starred 👻
Python library to train neural networks with a strong focus on hydrological applications.	
🛡 Python 🔥 418 🦞 215 Updated 3 days ago	

Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability

Luca Trotter¹, Wouter J. M. Knoben², Keirnan J. A. Fowler¹, Margarita Saft¹, and Murray C. Peel¹

Data Descriptor | Open access | Published: 31 January 2023

Caravan - A global community dataset for large-sample hydrology

 Download PDF
 ±

 Sections
 Figures
 References

About Papers Docs Blog Submit Log in with ORCID

SPOTting Model Parameters Using a Ready-Made Python Package

NeuralHydrology --- A Python library for Deep Learning research in hydrology

(Trotter et al., 2022; Kratzert et al., 2023; Houska et al., 2015; Kratzert et al., 2022) 38

Outline

- 2 Study Area and Data
- **3 SPPs Comprehensive and Quantitative Evaluation**
- 4 Rainfall-Runoff Modeling Based on Deep Learning
- **5 Rainfall-Runoff Modeling Based on Hydrological Models**
- **6 Runoff Response Mechanisms Based on Precipitation Types**
- 7 Conclusions and Future Prospects
- 8 Review and Revisions

8 Review and Revisions

◆ 8.1 Overall Review of the Thesis

Reviewer 1:

 \succ This paper focuses on the hydrological processes in the SRYR, addressing both theoretical frontiers and practical applications. The topic is well-chosen, relevant, and practical. Based on a review of domestic and international research, the paper quantitatively evaluates SPPs using multiple indicators. It also constructs a deep learning-based precipitation-runoff model for the SRYR, combining hydrological datasets and observed data, and performs case studies and comprehensive validation. Furthermore, the paper explores the runoff response mechanism in the SRYR based on precipitation classification. The research outcomes have certain theoretical and practical value and can provide theoretical and methodological references for basin hydrological process studies. The research approach is clear, the research plan is reasonable, and the technical approach is feasible. The case data is detailed and specific. The research work shows that the author has a solid and rich knowledge base in hydrological modeling and simulation and strong research capabilities. The writing is clear, well-organized, with a rigorous structure, and the figures and tables are well-presented, meeting the requirements for a master's thesis

8 Review and Revisions

◆ 8.1 Overall Review of the Thesis

> Reviewer 2:

> Hydrological simulation in the SRYR is of great significance for the water resource security of the Yellow River Basin. Given the difficulty of obtaining precipitation data for the source region, the use of SPPs in hydrological simulation is a good topic. This paper conducts comprehensive research on the application of satellite data, the selection of multiple hydrological models, and the optimization of hydrological parameters. The writing is standard, and the paper is a relatively excellent master's thesis.

Reviewer 3:

 \succ This paper addresses an important theoretical and practical issue, filling the research gap on the comprehensive evaluation of SPPs in cold regions. It provides a scientific basis for hydrological simulation and forecasting in these regions. The author has a comprehensive understanding of the relevant domestic and international literature, citing a large number of the latest research results, demonstrating a deep understanding of the cutting-edge developments in the field. The results and contributions of the paper are of high quality. The overall structure of the paper is clear, but the logical relationships between sections could be further refined. 40 Thank you