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1.1 Background and Significance

◆ Global Climate Change

(IPCC, 2021; NASA, 2023)
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⚫ “Asian Water Tower”

⚫ The highest independent land unit, most sensitive and fragile region

to climate change

◆ Global "engine" and "radiator" for climate regulation

⚫ “Yellow River Water Tower”

◆ Climate, ecology, and hydrology are undergoing significant changes

◆ The warming trend continues globally, with a larger-than-average

increase in temperature in the region

◆ Yearly precipitation shows a clear increase, especially during the

spring, summer, and winter seasons

◆ potential and actual evapotranspiration have shown an increasing

trend

◆ Runoff exhibits an interdecadal cyclical variation of alternating wet

and dry periods, with an overall decreasing trend

1.1 Background and Significance

◆ "Asian Water Tower" and "Yellow River Water Tower"

(Immerzeel et al., 2010)

1 Introduction
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1.1 Background and Significance

◆ Precipitation

◆ An important component of the water cycle

◆ Accurate precipitation records and research on

trends and variations are crucial for water resource

management, weather forecasting, and

hydrological modeling

⚫ Precipitation Observation

◆ Rain gauges can provide relatively accurate and

reliable point measurements of precipitation

◆ Satellites can provide global spatial coverage and

more consistent time intervals for observation

◆ Many satellite-based observational methods have

been implemented, using different methods to

improve data acquisition by optimizing the global

observation network

1 Introduction
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1.2.1 Development of Satellite Precipitation Products

◆ TRMM → GPM

(Sun et al., 2017)

Tropical Rainfall Measuring Mission  (1997~2015)

Global Precipitation Measurement (2014~present)

1 Introduction
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1.2.2 Development of Hydrological Modeling

(USGS, 2022)

1 Introduction
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1.2.2 Development of Hydrological Modeling

(Lin et al., 2022)

1 Introduction



1.2.2 Development of Hydrological Modeling

(Paul  et al., 2021)

⚫ Lumped model

⚫ Simple in structure and highly efficient in computation, without

considering the spatial distribution of input variables or

parameters

⚫ e.g. HBV、Tank、 SAC-SAM、GR4J etc.

⚫ Semi-distributed model

⚫ Divides the catchment area into sub-basins with similar

characteristics

⚫ Considers spatial variations in hydrological factors within the

catchment area

⚫ e.g. TOPMODEL、SWAT、TOPKAPI etc.

⚫ Distributed model

⚫ Considers spatial heterogeneity and performs detailed modeling

of the hydrological process in each grid unit, with each unit

having an independent response

⚫ e.g. VIC、DHSVM、MIKE-SHE etc. 8
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1.2.3 LSTM hydrological simulation

10(Kratzert et al., 2019)
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1.2.3 Development of Hydrological Modeling in the SRYR

11(Li et al., 2021; Xie et al., 2021; Yang et al., 2023)
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1.3 Research Approach
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◆ Located in the northeastern part of the Qinghai-

Tibet Plateau

◆ The terrain is generally lower in the west and

higher in the east

◆ The average altitude is around 4000 meters

◆ Area : 1.22×105km2

2.1 Study area

13

2.2 Data

◆ Ground Station Observation Data

⚫ Meteorological data: From 2000 to 2020, covering

12 meteorological stations

⚫ Streamflow data: From 2008 to 2022, covering the

four hydrological stations

2 Study Area and Data



The use of various SPPs such

as CHIRPS, CMORPH, GSMaP,

IMERG, MSWEP, PERSIANN,

and TMPA for daily

precipitation data from 2000

to 2020

◆ Other Data

HydroATLAS and ERA5-

Land, from 2008 to 2022, for

constructing the Caravan

dataset

2.2 Data

◆ SPPs

14

SPPs Abbreviation Resolution Period

CHIRPS CHI 0.05°/1 d 1981.01~present

CMORPH-BLD CMD 0.25°/1 d 1998.01~present

CMORPH-CRT CMT 0.25°/1 d 1998.01~present

GSMaP-Gauge GaG 0.1°/1 d 2000.03~present

GSMaP-MVK GaM 0.1°/1 d 2014.03~present

GSMaP-NRT GaN 0.1°/1 d 2000.03~present

IMERG-Early IME 0.1°/1 d 2000.06~present

IMERG-Final IMF 0.1°/1 d 2000.06~present

IMERG-Late IML 0.1°/1 d 2000.06~present

MSWEP MSP 0.1°/1 d 1979.01~present

PERSIANN-CCS PCS 0.04°/1 d 2003.01~present

PERSIANN-CDR PDR 0.25°/1 h 1983.01~present

PDIR-Now PDI 0.04°/1 d 2000.03~present

TMPA-3B42 TM 0.25°/1 d 1998.01-2019.12

TMPA-3B42RT TMT 0.25°/1 d 2000.03-2019.12

Table 2-1 Description of 15 SPPs

2 Study Area and Data
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3.1 Methodology
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⚫ CMD, GaG and IMF show superior performance on all

continuous statistical indicators compared to other SPPs

⚫ CMD , GaG and MSP exhibit better precipitation

detection capability

⚫ SPPsare stronger in detecting precipitation during the

rainy season and weaker during the dry season

⚫ SPPs  generally perform similarly under different

precipitation intensities

16

3.2 Comprehensive Quantitative Evaluation of SPPs

◆ Statistics Metrics

3 SPPs Comprehensive and Quantitative Evaluation



3 SPPs Comprehensive and Quantitative Evaluation

In the SRYR, many SPPs show weak performance in
the western area, with stronger performance at the
eastern stations, which are more densely located

3.2 Comprehensive Quantitative Evaluation of SPPs

◆ Spatial Distribution of Statistical Metrics

17



SPPs PRCPTOT SDII RX5 R95 R99

GaN 0.45 0.37 0.42 0.47 0.53

IME 0.44 0.52 0.51 0.55 0.57

IMF 0.43 0.41 0.40 0.66 0.63

IML 0.44 0.52 0.50 0.53 0.55

SPPs RSC RSD RSE RSA

CHI 0.69 0.07 0.75 0.57

CMD 0.98 0.81 0.71 0.83

CMT 0.87 0.42 0.74 0.72

GaG 0.99 0.86 0.49 0.77

GaM 0.75 0.64 0.84 0.76

GaN 0.58 0.49 0.86 0.67

IME 0.76 0.58 0.96 0.80

IMF 0.90 0.64 0.93 0.85

IML 0.75 0.59 0.95 0.79

MSP 0.86 0.80 0.16 0.58

PCS 0.00 0.26 0.35 0.19

PDR 0.76 0.48 0.75 0.69

PDI 0.75 0.54 0.21 0.49

TM 0.81 0.51 0.64 0.68

TMT 0.37 0.49 0.61 0.49 18

⚫ SPPs  showed patterns of extreme precipitation

distribution across the surface

⚫ IMF showed the strongest spatial correlation with

ground observations of extreme precipitation

⚫ Based on continuous statistics, precipitation

detective and the BMI of extreme precipitation

indices, IMF demonstrates superior performance,

with an RSA value greater than 0.85

Table3-1 Extreme precipitation index BMI

Table 3-2 Comprehensive and Quantitative Evaluation
3.2 Comprehensive Quantitative Evaluation of SPPs
◆ Extreme Precipitation Index BMI and Comprehensive 

and Quantitative Evaluation

3 SPPs Comprehensive and Quantitative Evaluation



3.3 Caravan-SRYR Hydrological Dataset

19

Caravan is a global hydrological community dataset that uses publicly

available global data such as ERA5-Land and HydroATLAS, which provide

climate forcing data and hydrological characteristic data support

This research extends the Caravan dataset to the SRYR. The data from

2008 to 2022 will be used to build the Caravan-SRYR dataset, which will be

used to support hydrological modeling

3 SPPs Comprehensive and Quantitative Evaluation
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4.1 Methodology

◆ CudaLSTM and EA-LSTM

CudaLSTM

EA-LSTM
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4 Rainfall-Runoff Modeling Based on Deep Learning

4.1 Methodology

◆ Hyperparameters and Training Data

Table 4-1 Hyperparameters of the LSTM Model in the SRYR

Table 4-2 Data Used for LSTM Training

Based on the data from four hydrological stations in the

Caravan-SRYR, the CudaLSTM and EA-LSTM models were

trained. The models were then optimized by adjusting the

hyperparameters through grid search methods

No LSTM Hyperparameter Range Value

1 Initial input gate value -3, -1, 0, 1, 3 3

2 dropout 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0.4

3 Learning rate

Lr0 1e-3, 1e-2, 5e-2 0.01

Lr30 5e-4, 1e-3, 5e-3 0.005

Lr40 1e-4, 1e-3 0.001

4 Batch size 32, 64, 128, 256 256

5 Hidden size 20, 30, 40, 50 20

6 epochs 20, 30, 40, 50 50

7 Sequence length 146, 182, 365, 730, 1095 365

Data type Variable Description 

Meteorological 

forcing data 

precipitation_IMF Daily precipitation (mm) 

potential_evaporation Daily potential evaporation (mm) 

temperature_2m_mean Daily mean temperature (°C) 

temperature_2m_max Daily max temperature (°C) 

temperature_2m_min Daily min temperature (°C) 

Static 

catchment 

attributes 

area Area (km2) 

elev_mean Average elevation (m) 

p_mean Mean daily precipitation (mm) 

pet_mean Mean daily potential evaporation (mm) 

aridity 
Aridity index, ratio of mean PET and mean 

precipitation 

frac_snow Fraction of precipitation falling as snow 

moisture_index Mean annual moisture index 

seasonality Moisture index seasonality 

high_prec_freq 
Frequency of high precipitation days, where 

precipitation ≥5 times mean daily precipitation 

low_prec_freq 
Frequency of low precipitation days, where 

precipitation <1 mm/d 

high_prec_dur Average duration of high precipitation events (d) 

low_prec_dur Average duration of low precipitation events (d) 

 



Station CudaLSTM EA-LSTM

Jimai 0.77 0.85

Maqu 0.84 0.91

Jungong 0.82 0.91

Tangnaihai 0.79 0.92

22

Table 4-3 Performance of LSTM Models in the SRYR
4.2 LSTM Model for Rainfall-Runoff Simulation

The EA-LSTM performed better by leveraging the
spatial features of the catchment region and more
accurately identifying the relationship between
precipitation and runoff. At the Tangnaihai station, EA-
LSTM achieves an NSE value of 0.92, while CudaLSTM only
reaches 0.79

Jimai

Maqu

Jungong

Tanghainai

4 Rainfall-Runoff Modeling Based on Deep Learning



◆ Both models show high precision in simulating medium and low flow ranges, effectively 

capturing the relationship between precipitation and runoff in the SRYR

◆ The ability of both LSTM models to simulate extreme runoff values still needs improvement 23

4 Rainfall-Runoff Modeling Based on Deep Learning

4.2 LSTM Model for Rainfall-Runoff Simulation
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5.1 Hydrological models

◆ Model Structure

HBV SAC-SMA FLEX-IS GSM-SOCONT

24

Caravan-SRYR
7 Hydrological 

models
Calibration Validation

AET 
improvement

5 Rainfall-Runoff Modeling Based on Hydrological Models



5.1 Hydrological models

◆ Model Structure

25

Alpine TOPMODEL

Tank

5 Rainfall-Runoff Modeling Based on Hydrological Models



𝐸𝑎 = ቊ
𝐸𝑝, if 𝑆𝑚 > 0

0 , otherwise
     →   𝐸𝑎 = 𝛼𝑒

𝑆𝑊𝐼−1 𝐸𝑝, 𝛼𝑒∈ 1,10

5.1 Hydrological Model

◆ Model Improvement

⚫ In arid and semi-arid regions, the proportion of ET to precipitation 

is much higher than that of runoff

⚫ Hydrological models often simulate AET using PET for calculations. 

In the process of simulating rainfall-runoff, AET is typically 

assumed to be a function of PET

⚫ The original Alpine, TOPMODEL, and Tank models equate PET to 

AET, ignoring the constraints imposed by soil moisture. To 

improve this, a nonlinear soil moisture constraint factor is 

introduced to modify the calculation of AET in Alpine, TOPMODEL, 

and Tank models：

26(Liu et al., 2019)

5 Rainfall-Runoff Modeling Based on Hydrological Models



5 Rainfall-Runoff Modeling Based on Hydrological Models

Model Type
Hydrological Station

Jimai Maqu Jungong Tangnaihai

Origin

Alpine -0.29 0.03 -0.05 -0.02

TOPMODEL -0.08 -0.20 -0.30 -0.28

Tank -0.47 -0.15 -0.21 -0.25

Improv-
ement

Alpine 0.68 0.78 0.75 0.77

TOPMODEL 0.59 0.46 0.44 0.48

Tank 0.77 0.80 0.79 0.83

5.2 Results of Model Improvement

⚫ After improvement, the Alpine model achieved an 

NSE value greater than 0.75 for the Jimai, Maqu, 

and Tangnaihai stations

⚫ TOPMODEL improvement showed significant 

enhancement in the low-flow simulations at Jimai, 

Maqu, and Tangnaihai stations, but a clear 

discrepancy still existed between the model results 

and the observed data for high-flow values

⚫ Tank model showed a significant improvement, 

with NSE value of 0.83 for the Tangnaihai station. It 

performed well across all stations, especially for 

high-flow values
27



5.2 Rainfall-Runoff Modeling in the SRYR 

NSE=0.82

NSE=0.84

NSE=0.86

NSE=0.81

Jimai

Maqu

◆ FLEX-IS and the improved Tank models achieved NSE values over 0.80 for Jimai and Maqu stations during the 

validation period

◆ TOPMODEL showed weaker performance with an NSE<0.70

28

5 Rainfall-Runoff Modeling Based on Hydrological Models



NSE=0.86 NSE=0.83

NSE=0.83 NSE=0.85

Jungong

Tangnaihai

◆ FLEX-IS, GSM-SOCONT, and improved Tankmodels achieved NSE values greater than 0.80 for runoff 

simulations at Jimai and Maqu stations during the validation period

◆ TOPMODEL showed weaker performance with NSE < 0.50

NSE=0.85

NSE=0.82

29

5 Rainfall-Runoff Modeling Based on Hydrological Models

5.2 Rainfall-Runoff Modeling in the SRYR 
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P Type
Average  P

（mm）

Average P 

Duration

（d）

Average P 

Intensity

（mm/d）

Cluster Ⅰ 15.9 3.9 3.7

Cluster Ⅱ 11.4 3.6 2.8

Cluster Ⅲ 23.1 5.0 4.1

Cluster Ⅳ 22.7 5.1 3.8

Cluster I 

Northern regional 
precipitation events

Cluster II 

Southern weak 
precipitation events

Cluster III 

Regional strong 
precipitation events

Cluster IV

Eastern strong 
precipitation events

6.1 Precipitation Types in SRYR
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6 Runoff Response Mechanisms Based on Precipitation
Types

6.2 Rainfall-Runoff Process for Different Precipitation Types

◆ Cluster I: Precipitation is small and concentrated in the 
northern part of the basin. Its overall impact on runoff 
is weaker, but the lag time from the precipitation 
peak to the formation of the peak flow at Tangnaihai
station is relatively short (3.9 days)

◆ Cluster II: Precipitation is small but concentrated in the 
southern part of the basin. The peak flow at Jimai
station responds more clearly to the precipitation 
peak, and the corresponding precipitation-runoff lag 
time is shorter (2.7 days).

◆ Cluster III: Precipitation is high and widely distributed, 
leading to the highest average and peak runoff values 
at the hydrological stations. However, the rainfall-
runoff lag time is longer (4.5 days at Jimai station, 6.0 
days at Tangnaihai station).

◆ Cluster IV: Precipitation is also relatively high, but the 
precipitation intensity shows a gradual decreasing 
trend. The corresponding runoff lag time is shorter 
compared to Cluster III.

Station P Type

Average 

Runoff

（m3/s）

Peak 

Runoff

（m3/s）

Runoff 

lag time 

（d）

Jiamai

Cluster Ⅰ 207 238 3.4

Cluster Ⅱ 251 286 2.7

Cluster Ⅲ 256 316 4.5

Cluster Ⅳ 238 284 4.1

Tangnai

hai

Cluster Ⅰ 933 1056 3.9

Cluster Ⅱ 1022 1153 5.2

Cluster Ⅲ 1117 1308 6.0

Cluster Ⅳ 1103 1261 5.1

31



6.2 Rainfall-Runoff Process for Different Precipitation Types

Typical Cluster I
2021-07-23~2021-07-26

Typical Cluster II
2020-04-16~2020-04-22

➢ Cluster I
⚫ the intensity of runoff 

increases significantly
⚫ distribution of precipitation is 

concentrated in the upstream 
part of the basin

⚫ At Tangnaihai, the 
precipitation-runoff lag time 
is only 1 day

➢ Cluster II
⚫ precipitation is concentrated 

in the southern basin
⚫ At Jimai , the response of 

runoff to precipitation is more 
significant. The observed 
runoff ranges from 158 m³/s 
to 361 m³/s, with a runoff 
duration of 2 days 32

6 Runoff Response Mechanisms Based on Precipitation
Types



6.2 Rainfall-Runoff Process for Different Precipitation Types

Typical Cluster III
2022-09-14~2022-09-19

Typical Cluster IV
2020-06-18~2020-06-22

➢ Cluster III
⚫ the precipitation in the basin 

is high, and the precipitation 
intensity is large

⚫ The precipitation is evenly 
distributed across the basin, 
and the rainfall-runoff lag 
time is relatively long

➢ Cluster IV
⚫ the precipitation intensity in 

the basin gradually decreases
⚫ Tangnaihai station shows a 

significant runoff response. 
The runoff increases rapidly 
from 2040 m³/s to 2720 m³/s, 
and the precipitation-runoff 
lag time is also relatively short 
(3 days). 33

6 Runoff Response Mechanisms Based on Precipitation
Types
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（1）The IMF product performed the best in the comprehensive evaluation, 

particularly in detecting extreme precipitation events, with an RSA score of 0.85, 

significantly higher than other products. This product was used to create the Caravan-

SRYR hydrological dataset for the SRYR

（2）过Both deep learning and traditional hydrological models simulated the 

hydrological processes in the SRYR, with average NSE > 0.70 for all models. The EA-

LSTM model, based on deep learning, showed significant advantages in rainfall-runoff 

simulation, with NSE values exceeding 0.85.

（3）The soil moisture constraint factor was incorporated into the AET calculation, 

improving the performance of the Alpine, TOPMODEL, and Tank models in simulating 

complex hydrological processes in the Yellow River source region

7.1 Main Conclusions

7 Conclusions and Future Prospects



（4）The runoff responses to different types of precipitation events varied significantly:

◆ Cluster I: Small precipitation, concentrated in the northern basin, with a short lag 

time of 3.89 days at Tangnaihai station

◆ Cluster II: Small precipitation, concentrated in the southern basin, with a short lag 

time of 2.67 days at Jimai station

◆ Cluster III: Large and widely distributed precipitation, with the highest average and 

peak runoff, but a longer lag time (4.46 days at Jimai station, 5.96 days at 

Tangnaihai station). Models captured the precipitation-runoff relationship most 

accurately for this cluster.

◆ Cluster IV: Higher precipitation, but with decreasing intensity and a shorter lag time 

compared to Cluster III

7.1 Main Conclusions

35
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7.2 Innovation Points

⚫ Constructed the Caravan-SRYR hydrological modeling dataset based on the

multidimensional comprehensive quantitative evaluation of SPPs

⚫ Simulated the rainfall-runoff process in the SRYR using both deep learning and traditional

hydrological models.

⚫ Improved the Alpine, TOPMODEL, and Tank models by introducing a soil moisture

constraint factor in the AET calculation module

⚫ Classified precipitation events using K-means clustering, revealing the runoff response

characteristics to different types of precipitation

36
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7.3 Limitations and Prospects 

⚫ High-accuracy SPPs are typically calibrated with ground rain gauge data, which have time

delays in data release. Future research could explore the potential of near-real-time SPPs

for hydrological forecasting.

⚫ The EA-LSTM model has limited training samples and weak interpretability. Combining

physical models and deep learning models could improve the model's ability to explain

hydrological processes in the basin

⚫ The lumped hydrological model has limitations in simulating extreme runoff events due

to its simplifying assumptions. Future work could compare the application of different

SPPs in distributed hydrological models to validate the performance of various

precipitation data in high-accuracy hydrological models
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Github repositories
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◆ GitHub Repositories Used in This Study

⚫ MARRMoT：https://github.com/wknoben/MARRMoT

⚫ Caravan ： https://github.com/kratzert/Caravan

⚫ Spotpy ：https://github.com/thouska/spotpy

⚫ NeuralHydrology ：https://github.com/neuralhydrology/neuralhydrology

(Trotter et al., 2022; Kratzert et al., 2023; Houska et al., 2015; Kratzert et al., 2022)
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8 Review and Revisions
◆ 8.1 Overall Review of the Thesis

➢ Reviewer 1:
➢ This paper focuses on the hydrological processes in the SRYR, addressing both theoretical

frontiers and practical applications. The topic is well-chosen, relevant, and practical. Based on
a review of domestic and international research, the paper quantitatively evaluates SPPs using
multiple indicators. It also constructs a deep learning-based precipitation-runoff model for
the SRYR, combining hydrological datasets and observed data, and performs case studies
and comprehensive validation. Furthermore, the paper explores the runoff response
mechanism in the SRYR based on precipitation classification. The research outcomes have
certain theoretical and practical value and can provide theoretical and methodological
references for basin hydrological process studies. The research approach is clear, the research
plan is reasonable, and the technical approach is feasible. The case data is detailed and
specific. The research work shows that the author has a solid and rich knowledge base in
hydrological modeling and simulation and strong research capabilities. The writing is clear,
well-organized, with a rigorous structure, and the figures and tables are well-presented,
meeting the requirements for a master's thesis
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8 Review and Revisions
◆ 8.1 Overall Review of the Thesis

➢ Reviewer 2:
➢ Hydrological simulation in the SRYR is of great significance for the water resource security of

the Yellow River Basin. Given the difficulty of obtaining precipitation data for the source
region, the use of SPPs in hydrological simulation is a good topic. This paper conducts
comprehensive research on the application of satellite data, the selection of multiple
hydrological models, and the optimization of hydrological parameters. The writing is
standard, and the paper is a relatively excellent master's thesis.

➢ Reviewer 3:
➢ This paper addresses an important theoretical and practical issue, filling the research gap on

the comprehensive evaluation of SPPs in cold regions. It provides a scientific basis for
hydrological simulation and forecasting in these regions. The author has a comprehensive
understanding of the relevant domestic and international literature, citing a large number of
the latest research results, demonstrating a deep understanding of the cutting-edge
developments in the field. The results and contributions of the paper are of high quality. The
overall structure of the paper is clear, but the logical relationships between sections could be
further refined. 40
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